Debugging Report

(3x1]

Desired Positiol

——
I]
\

= - |

The overall control loop is shown above. The blocks that need to be debugged are Position
Control, Position Thrust, Attitude Control and Flyer.

brovad|
—
-0.3453; | H

F’E :
|

Position control:
The position control block contains a PD controller that generates the desired acceleration
required for the flyer to reach the desired position.

45 x_desired _
—al 4 a_dis| P

x_dot fcn

[3x1]

Position Control

Inputs:

Desired Position (3 by 1 vector)
Current Position (3 by 1 vector)
Current Velocity (3 by 1 vector)

Outputs:
Desired acceleration (3 by 1 vector)

Debugging
Desired Position: [1:0:0]
Current Position: [0:0:0]

Current Velocity [-1:0:0]

Desired acceleration: [4.35:0:0]

Position Thrust

R

a_abs‘ f_pos

Position Thrust

The position thrust block takes in the magnitude of the required acceleration from the system,

and outputs the thrust required for the position control.

Input:

magnitude of the required acceleration from the system (scalar)

Output:
Position thrust (scalar)

Unit test:

Set the desired acceleration a,.s = 0, then the input to the position thrust a

Then f,,,s = 2.255N, which is consistent with the hover solution.

Flyer
—p|f old f_last |t3x11
<) d dot | XM

X_0 x_do

13X x_dot_old R TTﬂ[]

‘ theta_old theta 0

3 = olfcn [3x1]
omega_ol omega u

[3 counter_old counter

Flyer

el

The block simulates the dynamics of the drone given a thrust input.
Inputs (“old” values are values from the last iteration):

Current thrust f
Old thrust f,;4
Old position x,;4
Old velocity x,;4

g = 9.8m/s?.

Old Euler angle 6,4
Old Angular velocity w4
Old Counter (for keeping track of the number of iterations)

Outputs:

Last thrust f;,¢; (save the current thrust value for the next iteration)
Position x

Velocity x

Euler angle 6

Angular velocity w

Counter (for keeping track of the number of iterations)

Debugging:

The first step to check is the rotation matrix. The built-in function eul2rotm in MATLAB can
produce a rotation matrix given an Euler angle. However, eul2rotm uses a different convention
from the quadcopter model the Flyer block is based on: It is possible that the abnormal Euler
Angle data is caused by the discrepancy.

Test: fixed thrust hover

Start:

Euler angle: [0;-0.3453;0] (hover state value)

Angular Velocity: [7.0;-3.7;22.4] (hover state value)

Thrust: 2.255 N

No drag force and torque

Results:

velocity (m/s)
3

-20 [

-25 L 1 L ! 1
0 0.5 1 1.5 2 25 3

time (s)

Figure 1: velocity

omega (rad/s)

X
=_— |
z 4
5 ey
-10 - q
E
&
:_g -16 b
0
2
-20 -
=25 - =
-30 | I I | I
0 0.5 1 15 2 2.5 3
time (s)
Figure 2: position
150 T T T
X
Y
y
Mﬂj\
100 - .
/“/—\/

\

o
N
W
/
\
/
/
\\
\
\
)
/
N\

-100 L L L L 1
0 0.5 1 1.5 2 2.5

time (s)

Figure 3: angular acceleration

theta (rad)

160

140

120

80

60

40

20

-20

1 1.5 2
time (s)

Figure 4: Euler angles

