Debugging Report
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The overall control loop is shown above. The blocks that need to be debugged are Position
Control, Position Thrust, Attitude Control and Flyer.
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Position control:
The position control block contains a PD controller that generates the desired acceleration
required for the flyer to reach the desired position.
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Position Control

Inputs:

Desired Position (3 by 1 vector)
Current Position (3 by 1 vector)
Current Velocity (3 by 1 vector)

Outputs:
Desired acceleration (3 by 1 vector)

Debugging
Desired Position: [1:0:0]
Current Position: [0:0:0]



Current Velocity [-1:0:0]

Desired acceleration: [4.35:0:0]

Position Thrust
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Position Thrust

The position thrust block takes in the magnitude of the required acceleration from the system,

and outputs the thrust required for the position control.

Input:

magnitude of the required acceleration from the system (scalar)

Output:
Position thrust (scalar)

Unit test:

Set the desired acceleration a,.s = 0, then the input to the position thrust a

Then f,,,s = 2.255N, which is consistent with the hover solution.
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The block simulates the dynamics of the drone given a thrust input.
Inputs (“old” values are values from the last iteration):

Current thrust f
Old thrust f,;4
Old position x,;4
Old velocity x,;4

g = 9.8m/s?.



Old Euler angle 6,4
Old Angular velocity w4
Old Counter (for keeping track of the number of iterations)

Outputs:

Last thrust f;,¢; (save the current thrust value for the next iteration)
Position x

Velocity x

Euler angle 6

Angular velocity w

Counter (for keeping track of the number of iterations)

Debugging:

The first step to check is the rotation matrix. The built-in function eul2rotm in MATLAB can
produce a rotation matrix given an Euler angle. However, eul2rotm uses a different convention
from the quadcopter model the Flyer block is based on: It is possible that the abnormal Euler
Angle data is caused by the discrepancy.

Test: fixed thrust hover

Start:

Euler angle: [0;-0.3453;0] (hover state value)

Angular Velocity: [7.0;-3.7;22.4] (hover state value)

Thrust: 2.255 N

No drag force and torque

Results:
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Figure 1: velocity
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Figure 2: position
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Figure 3: angular acceleration
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Figure 4: Euler angles




